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AAAAbbbbssssttttrrrraaaacccctttt

The upper limit of strength (the "ideal strength") has been an active subject of research and

speculation for the better part of a century.  The subject has recently become important, for

two reasons.  First, given recent advances in ab initio techniques and computing machines,

the limits of strength can be calculated with considerable accuracy, making this one of the

very few problems in mechanical behavior that can actually be solved.  Second, given

recent advances in materials engineering, the limits of strength are being approached in

some systems, such as hardened or defect-free films, and their relevance is becoming

recognized in others, including hard coatings, carbonitrides and diamond-cubic crystals.

An elastically strained solid is always at least metastable.  Given a kinetically plausible

pathway, it will spontaneously transform into a sheared or broken replica of itself or into a

new phase entirely.  In that sense, plastic deformation is a structural phase transformation

whose onset is governed by the usual criteria.  It can be nucleated (and ordinarily is) but,

failing that, must commence at the limit of stability of the elastic state.  This thermodynamic

instability sets the upper limit of strength.  The present paper defines the limits of elastic

stability (which are surprisingly subtle), reviews ab initio computations for a number of

metals and compounds, shows how those limits reflect the symmetry of the strained lattice,

and discusses the experimental situations in which they are known or expected to be

important.           
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IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn

While one does not ordinarily list "mechanical strength" among the subfields of the theory

of phase transformations, there are perfectly valid reasons to do so.  As Gibbs [1] noted

more than a century ago, a solid that is subject to a deviatoric (shear) stress is always at

least metastable with respect to transformation into a "stress-free" state (free, that is, of the

deviatoric stress that drives plastic deformation).  If the solid is crystalline, the

transformation to a stress-free state is accomplished by one of three basic mechanisms (Fig.

1):  (1) The solid deforms into a sheared replica of itself by moving dislocations, twinning,

or diffusion.  (2) The solid breaks into stress-free fragments.  (3) The solid changes its

shape by changing its crystal structure, a process that is sometimes called "transformation-

induced plasticity".  The strength of the solid is the stress that triggers the easiest of these

transformations.
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FFFFiiiigggg....    1111::::  Deformation mechanisms (diffusional creep should be

added to complete the list).

There are three ways to start a structural transformation: heterogeneous nucleation,

homogeneous nucleation and thermodynamic instability.  Mechanical deformation usually

nucleates heterogeneously at pre-existing dislocations, cracks or internal stress

concentrations.  If no such defects exist, or if they are very difficult to activate, a solid

deforms when the applied stress is large enough to nucleate defects spontaneously or to

destabilize the lattice itself.  The stress that is just sufficient to destabilize the lattice (the

elastic limit) is the upper limit of strength; no solid can survive unchanged if the stress can

disrupt the atomic bonds that hold it together.  
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Early research on the elastic limit, or "ideal strength" is summarized by Kelly and

Macmillan [2].  Separate lines of inquiry considered fracture in tension and failure in shear.

The ideal strength of a crystal loaded in tension was studied by a series of investigators

from Polanyi [3] and Zwicky [4] through Born and Furth [5] to Orowan [6] and others [2].

Most of these investigators [3,4,6-11] used Born-Mayer or Lennard-Jones central-force

potentials to investigate the elastic instabilities that lead to fracture in tension.      

The simple, textbook estimate of the ideal tensile strength was done by Orowon [6].  He

assumed that the stress required to separate planes of atoms is a sinusoidal function of their

displacement, and is proportional to Young's modulus when the displacement is small.

Since the net work required for brittle cleavage is at least twice the surface tension (©), the

cleavage stress, ßm, is approximately

ßm = 
E©

h
   « 0.3E (1)

where E is the modulus and h is the interplanar separation in the direction of tension.  The

factor 0.3 follows from a rough estimate of the surface tension.  The strength predicted by

eq. (1) is significantly higher than that estimated by other methods, but is still a useful

reference value.

Research into the ideal shear strength can be traced back to Frenkel [12], whose model

remains the textbook case [2].  He considered the rigid shear displacement of neighboring

planes of atoms, and assumed that the shear stress-shear strain relation is sinusoidal, with

period, b, which is the interatomic distance in the direction of shear.  In the limit of small

displacement, x, the shear stress, †, is linear in the strain; † = Gx/h, where G is the shear

modulus in the plane of shear and h is the interplanar separation.  This limit, together with

the sinusoidal approximation for †, fixes the function †(x/b).  Its maximum value is the

ideal strength in shear:

†m = 
Gb

2πh
 (2)

The most familiar case is <11–2>{111} slip in fcc crystals, for which †m « G/9.  

Frenkel's model was revisited by Mackenzie [13], who predicted significantly smaller

values of †m.  However, until fairly recently there were very few atomic-level calculations

of the ideal strength in shear.  Macmillan and Kelly's work on NaCl and Ar [7-8], and

Huang, Milstein and Baldwin's study of shear in Ni [14] are among the few examples.

The experimentalists who were interested in the ideal strength studied the behavior of

defect-free whiskers [2].  While interesting results were obtained from this research,

particularly from Brenner's [15] classic work on Fe, Cu and Ag, the samples are difficult

to prepare and test, and the physical meaning of the results is not entirely clear. Recent
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theoretical calculations and nanoindentation experiments suggest that the maximum

strengths measured in whiskers are well below the ideal strength.

In the last few years there has been a significant increase of interest in the ideal strength, by

theorists, experimentalists and practicing metallurgists.  Theorists have returned to the

problem because it appears that it can now be solved.  Advances in theoretical techniques

and computing machines make it possible to calculate the limits of elastic stability with

some confidence.  Experimentalists have returned to the problem because strengths that

seem to approach the ideal are now being measured in nanoindentation experiments that test

the actual hardness of local regions in thin films.  Practical metallurgists are interested in the

problem because ultra-small volumes and ultrahard materials are increasingly important in

engineering devices, and the ideal strength is relevant to both.  Finally, materials scientists

are learning that the conditions of elastic stability provide a simple framework for

understanding a number of puzzling phenomena in mechanical behavior.  Examples include

the tendency of bcc materials to cleave on {100} and slip along ´111¨ in a variety of planes,

the tendency of fcc materials to remain ductile at low temperature while bcc's do not, and

the tendency of diamond cubic materials to transform rather than yielding under indentation

loads.

In the following we give a brief summary of recent progress in the field, focusing on work

done since the appearance of Kelly and Macmillan's 1986 monograph [2], and on the

results and implications of the ab initio calculations that have recently become possible.  We

discuss this work under four headings:  (1) The conditions of elastic stability.  Perhaps

surprisingly, the basic concepts of elastic stability and ideal strength are subtle, and the

definition of the ideal strength is not settled.  (2) Computing the ideal strength.

Calculations have been done for a sufficient number of solids to identify several interesting

trends.  (3) Understanding the ideal strength.  The ideal strength is set by the limits of

elastic stability.  In the usual case these limits are not arbitrary, but are fixed by the

symmetry of the underlying crystal and the change in symmetry with deformation.  The

overriding influence of symmetry not only explains when instabilities occur, but also

explains why the strengths of materials with a given crystal structure can be written in a

simple dimensionless form.  (4) Achieving the ideal strength.  It is becoming increasingly

clear that there are materials and load geometries in which the ideal strength governs

mechanical behavior.  There are others in which the ideal strength is inherently

unattainable.   

CCCCoooonnnnddddiiiittttiiiioooonnnnssss    ooooffff    eeeellllaaaassssttttiiiicccc    ssssttttaaaabbbbiiiilllliiiittttyyyy

A material is tested for its strength by placing it in some testing device and straining it until

it deforms plastically or breaks.  If we assume constant temperature and control the strain,

the governing thermodynamic potential is the Helmholtz free energy, F.  However, the

solid is acted on by the loading mechanism, which does work during any displacement of

its boundary.  Thermodynamic equilibrium requires that in any change of state at constant

temperature the increase in free energy equal or exceed the work done by the loading

mechanism [16]:       
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∂F ≥ ∂W (3)

The first-order form of eq. (3) sets the conditions of mechanical equilibrium, which require

that the tractions on the solid surfaces be equal and opposite.  Mechanical stability is

governed by the second-order terms.  But the second-order terms depend on how the

tractions vary with the strain, and this is a function of the loading mechanism.  Hence, as

Hill [16] and Hill and Milstein [17] have discussed in some detail, elastic stability depends

on the behavior of the loading mechanism as well as on the properties of the material.  

Hill [16] suggests that one define an intrinsic strength by selecting a convenient measure of

the stress (such as the Cauchy stress or the Green stress that is conjugate to the Lagrangian

strain) and assuming a loading mechanism that maintains that stress to at least second

order.  The problem is that the result depends on which stress is chosen.  Perhaps the most

appealing choice is the Cauchy ("true") stress (Wang, et al. [18-20]), but there are other

candidates [16].  In practice, different choices of reference stress produce very similar

numbers for the ideal strength in tension or shear (basically because, with the exception of

tests done under high pressure, the stress at instability is small compared to the elastic

modulus).  Still, it is troublesome that one must choose a reference stress, particularly since

it may not be easy to design a practical loading mechanisms that maintains it.

Internal       stability       and       ideal       strength

A useful, unique definition of the intrinsic strength is implicit in Gibbs' [1] original

formulation of the conditions of stability.  Gibbs sought the conditions that must be

satisfied for stability with respect to internal changes.  These conditions of internal stability
are always necessary; a system that is rendered unstable by internal perturbations must

evolve whatever the mechanism loading its boundary.  In our case Gibbs' condition of

internal stability is   

∂F ≥ 0 (4)

where the variation is to be taken at constant temperature with boundaries fixed in space.

The consequences of eq. (4) are developed in ref. [21].  We confine ourselves here to

stating the result.  Let the free energy of a solid of fixed composition be written as a

function of the temperature and the Lagrangian (Green's) strain: F = ¡F(T, EEEE).  The

Lagrangian stress and the elastic moduli are defined by the first and second derivatives:

†ij = 
1

V0





∆¡F

∆Eij
 (5)

Cijkl = 
1

V0





∆2¡F

∆Eij∆Ekl
 (6)  
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where V0 is the volume of the reference (unstrained) state.  Now suppose that the solid is

given an infinitesimal strain, ‰ij = 1/2(∂ui,j+∂uj,i), from a reference state in which the stress

is †ij.  The Cauchy ("true") stress, tij, is related to the infinitesimal strain, ‰‰‰‰, by

tij = †ij + Bijkl‰kl (7)  

   

where BBBB is the Wallace tensor [22],

Bijkl = Cijkl + 
1

2
 [†jk∂il + †ik∂jl + †jl∂ik + †il∂jk - 2†ij∂kl] (8)

The terms involving the stresses on the right-hand side of eq. (8) are second-order terms

introduced by the translation from the Lagrangian strain to the infinitesimal strain, ‰ij

[19,21-22].

   

Internal stability requires that the symmetric part of BBBB, the tensor ¬¬¬¬, have no negative eigen-

values.  Since [21]

¬klmn = Cklmn + 
1

2
  [†km∂ln+†kn∂lm+†lm∂kn+†ln∂km-†kl∂mn-†mn∂kl] (9)

¬¬¬¬ has Voigt symmetry and can, therefore, be written as the symmetric, 6x6 matrix, ¬ij.  Let

¬å (å = 1,...,6) be the eigenvalues of ¬ij.  For all å,

¬å ≥ 0 (10)

If a material is loaded from a relaxed initial state the strength in the direction of the load

cannot exceed the value set by the first violation of the condition (10).  This is, hence, a

good, intrinsic measure of the ideal strength.  (Wang, et al. [19] have shown that the same

result is obtained if one assumes a loading mechanism that maintains the Cauchy stress and

applies condition (3)).

As a specific example, consider a cubic crystal stretched in uniaxial tension along [100].

The crystal becomes tetragonal as soon as it is stretched, and the elastic matrices cij and ¬ij

reflect this.  The conditions of stability are [21]:

(c11+ß)(c22+c33) ≥ 2(c12-ß/2)2 (11)

c22 ≥ c23 (12)

c44 ≥ 0 (13)

c55 ≥ - ß/2 (14)
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where the cij are the elastic moduli in the Voigt notation, and ß is the applied stress.  The

conditions that govern other stress states are easily found.  They only have simple algebraic

expressions when the principle stresses are along axes of high symmetry.

It is important to note that the conditions (10) test the internal stability of the current state,

which is characterized by the Cauchy stress, tttt, and by the current values of the elastic

constants, cij .  Eqs. (10) are not capable of finding instabilities a priori since they do not

reveal instabilities that are displaced from the current state by a finite strain.  For example,

the conditions contained in eqs. (11-14) govern the stability of a strained solid whose

current state (and, hence, matrix of elastic constants) has tetragonal symmetry.  These

conditions do not identify the instability in shear on {111} that is the normal mode of

plastic failure in an fcc crystal pulled in [100] tension.  Instability in shear on {111}

requires a finite shear in a {111} plane, which is a triclinic or monoclinic distortion

governed by elastic constants that have that symmetry.  Elastic instability and, hence, the

ideal strength depends on the deformation mode.     

  

Extrinsic       stability       and       "engineering"       strength

When the loading mechanism controls some stress other than the Cauchy stress it may

impose conditions of stability that are more stringent than those contained in eq. (10), with

the consequence that the largest possible value of the effective "engineering" strength is

significantly less than the ideal.  An important example is stability under "all around dead

loading" (Hill [16]).  In dead loading the loading mechanism fixes the "engineering stress"

(the Piola-Kirkhoff stress in the language of continuum mechanics), which is the applied

force per unit area of the reference configuration.  Since the Piola-Kirkhoff stress tensor

need not be symmetric a material under dead loading must be stable with respect to rotation

as well as strain.  

The full set of stability conditions under dead loading is presented and discussed by Hill

[16]. The conditions that govern stability with respect to rotation are stringent.  Among

them, if ßi (i=1,2,3) are the Cauchy principle stresses set by a "dead" loading mechanism,

we must have

ßi + ßj > 0  (i ≠ j = 1,2,3) (15)

That is, the stress system must produce a net tension.

"Soft        phonons"

From the perspective of the crystal lattice, mesoscopic to macroscopic elastic deformations

fall at the long-wavelength end of the vibrational spectrum.  Behavior at shorter

wavelengths is also important, for at least two reasons.  First, vibrational instabilities ("soft

phonons") may intrude before long-range elastic instability, as happens in some martensitic

phase transformations [23].  Second, even when the instability is long-range, its initial

development may still be dominated by a "critical wave" with a much shorter wavelength,

as happens in other thermodynamic instabilities (e.g., spinodal decomposition).  The
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crystallographic type and wavelength of this critical wave may determine how the instability

ultimately resolves itself, whether as a shower of dislocations or twins, cleavage, or

structural transformation.

While many investigators have studied "soft mode" instabilities in unstressed solids

undergoing thermal phase transitions, the authors have found very little work on the

vibrational behavior of highly strained solids.  Pertinent investigations include that of

Wallace [22], who studied the criteria that govern vibrational stability in strained solids,

and those of Wang, et al. [20], who used molecular dynamic simulations of model systems

to investigate behavior just after the onset of instability.

CCCCoooommmmppppuuuuttttiiiinnnngggg    tttthhhheeee    iiiiddddeeeeaaaallll    ssssttttrrrreeeennnnggggtttthhhh

Methodology

With modern computers and theoretical techniques it is possible to do accurate ab initio
calculations of the energies of aggregates of several hundred atoms.  Since the elastic

behavior of a perfect crystal can be computed from the behavior of a single unit cell the

available techniques are adequate to calculate the elastic properties of the elements and

typical ordered compounds, at least in the low-temperature limit [24].

The ability to compute the energy and the elastic constants makes it possible, in theory, to

use the conditions set by eq. (10) to find the ideal strength along any equilibrium load path.

To do this, it is neither practical nor necessary to compute the full matrix of elastic

constants at each incremental step.  All attempts at first-principles calculation known to us

take the simpler approach of incrementing a single strain until the stress reaches its

maximum value.  The uniaxial deformation is carried out in one of two ways: uniaxial

strain or uniaxial stress.  Choosing ‰å as the infinitesimal strain increment, the change in

the conjugate Cauchy stress (tå) is given by

dtå = ¬ååd‰å               (uniaxial strain) (16)

dtå = ∫ååd‰å = 
1

såå
  d‰å = 

|¬¬¬¬|

¬åå
  d‰å     (uniaxial stress) (17)

where |¬¬¬¬| is the determinant of ¬¬¬¬ and ¬åå is the cofactor of the element ¬åå.  

In the former case, uniaxial strain, the maximum stress does not fall at an intrinsic

instability, and is not a very good approximation to the intrinsic strength unless the material

is almost isotropic.  

In the latter case, uniaxial stress, the maximum of the Cauchy stress is an intrinsic

instability.  However, it is not necessarily the first instability to be encountered along the

deformation path.  If ¬¬¬¬ and ¬åå have common eigenvalues, the zeros of these eigenvalues

divide out of eq. (17) and do not produce maxima in the applied stress, tå.  Physically, if ¬¬¬¬
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has eigenvectors whose deformations are orthogonal to ‰å  (i.e., do not change ‰å), their

instabilities terminate stable deformation along ‰å without producing an extremum in the

stress conjugate to ‰å.  Orthogonal instabilities are particularly likely when ‰å is along an

axis of high symmetry.  For example, when fcc crystals are stretched along [100] the

orthorhombic instability (c22 = c23) is usually reached before the tensile instability.

Orthogonal instabilities are less common in shear strains that significantly reduce the crystal

symmetry, and are relatively easy to detect when they occur.   

In practice one can test for orthogonal instabilities in either of two ways.  First, the full set

of eigenvalues can be probed periodically along the deformation path.  Since the eigen-

values are, ordinarily, well-behaved functions of the strain, it is usually straightforward to

determine when and where zeros occur.  Second, the atomic configuration can be perturbed

to introduce orthogonal strains and test stability directly.  This method is easily

incorporated into tests in uniaxial stress that use atom displacements to relax the lateral

stresses after each strain increment.

Results

The "first-principles" calculations of the ideal strength that known to us can be gathered

into two sets: strength in shear and strength in tension.

Strength       in       shear.    The first ab initio investigation of ideal strength in shear that is known to

us was that by Paxton, et al. [25] almost a decade ago.  They used approximate

pseudopotential methods to calculate the ideal shear strength in uniaxial strain.  The

materials studied included the bcc metals V, Nb, Cr, Mo and W sheared in the system

´111¨{112}, and the fcc metals Al and Cu sheared in the system ´112¨{111}.  Some of the

results are included in Table I.  In general, they found bcc shear strengths in the range

0.14-0.17Gu, and fcc strengths 0.14Gu for Al and 0.13Gu for Cu, where Gu = (1/3)[c11-

c12+c44] is the shear modulus for unrelaxed strain, and has the same value for the systems

´111¨{112} and ´112¨{111}.  

Xu and Moriarty [26] calculated the unrelaxed shear strength (uniaxial strain) for Mo, and

for Na and Mg in the bcc structure.  They used four-body potentials extracted from

generalized pseudopotential theory by a method of their own construction.  They found a

value of 0.17Gu for the shear strength of Mo, which is about 20% above Paxton, et al.

[25].  They found much lower shear strengths for bcc Mg (0.1Gu) and Na (0.08Gu).

Söderlind and Moriarty [27] computed the unrelaxed shear strength of Ta in the system

[111](11–2) as a function of pressure to 10 Mbar.  Their value for atmospheric pressure,

7.37 GPa (0.105Gu) is included in Table I. This value is, in dimensionless form, well

below that calculated for the other transition metals.  Interestingly, they calculate a

significant increase in strength with pressure, which is primarily due to an increase in the

dimensionless strength.  Their predicted value of the unrelaxed strength at 0.45 Mbar is

0.123Gu.
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Table I:  Ab initio calculations of the ideal strength in shear.

†u refers to the unrelaxed case, †r to the fully relaxed case.

Material Cell Ref System †u (GPa) †u/Gu †r (GPa) †r/Gr

Al fcc 25 [11–2](111) 3.50 0.14

28 [11–2](111) 3.40 0.13 1.85 0.084

Cu fcc 25 [11–2](111) 5.3 0.13

28 [11–2](111) 4.00 0.10 2.65 0.088

Ir fcc 25 [11–2](111) 24.12 0.12

W bcc 25 [111](11–2) 19.2 0.12

30 [111](11–2) 19.2 0.12 18.1 0.11

30 [111](1–10) 20.8 0.13 17.7 0.11

30 [111](12–3) 19.6 0.12 17.7 0.11

Mo bcc 25 [111](11–2) 17.8 0.13

26 [111](11–2) 20.9 0.17

31 [111](11–2) 16.4 0.12 15.6 0.12

Cr bcc 25 [111](11–2) 20.5 0.16

Nb bcc 25 [111](11–2) 7.52 0.16

V bcc 25 [111](11–2) 7.28 0.14

Ta bcc 27 [111](11–2) 7.37 0.105

Na bcc 26 [111](11–2) 0.20 0.08

Our own calculations have included shear strengths of the fcc metals Al and Cu [28-29] and

bcc metals W [30] and Mo [31] in both unrelaxed and relaxed shear (uniaxial stress).  The

results are included in Table I.  The strengths in the relaxed case are found by imposing an

incremental shear strain in the designated slip system (´11–2¨(111) in the fcc case), adjusting

the five orthogonal strains until all stresses except the shear stress conjugate to the primary

strain vanish (as calculated by the Hellman-Feynman method), and iterating this procedure

until the shear stress reaches its maximum value.  

For the fcc metals, the unrelaxed strengths are 3.4 GPa (0.13Gu) for Al and 4.0 GPa

(0.10Gu) for Cu, somewhat below the values computed by Paxton, et al. [25].  The

relaxed strengths are much lower still, 1.85 GPa (0.084Gr) for Al and 2.65 GPa (0.088Gr)

for Cu, where the modulus Gr = 3c44(c11-c12)/4c44+c11+c12.  The shear stress-strain

curves are plotted in Fig. 2, and show the dramatic effect of the relaxation.  The strains at

shear instability in the relaxed case are shown in Table II.  Despite the similarity of the

dimensionless shear strengths of Al and Cu, the relaxation strains are very different.  The

cause seems to lie in the very different elastic anisotropies of the two metals [29].
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FFFFiiiigggg....    2222:::: Shear stress-strain curves for Al and Cu sheared on

[11–2](111).  x/b is the atomic displacement along [11–2].

Table II:  Engineering shear strains at failure for Al and Cu in a coordinate

system spanned by axes along [111], [1–10] and [11–2] [27,28].

γE
13

  εE
11

  εE
22

  εE
33

  ∆V/V0

Al 14.5 1 -3 3 1.4

Cu 13 -3 3 0.2 0.4

For the bcc metals, the most striking observation is the similarity of the relaxed shear

strengths of W for the three common bcc slip systems: †r = 18.0 GPa for ´111¨{110} and

17.7 GPa for ´111¨{112} and ´111¨{123} (Fig. 3).  In all three cases the shear strain at

instability is about 0.17.  We shall discuss the physical reason for this similar behavior in

the next section.  Comparing slip in W and Mo on the system ´111¨{112}), the relaxed

strengths are 17.7 GPa (0.11Gr) and 15.6 GPa (0.12Gr) respectively, where Gr =

3c44(c11-c12)/(4c11+(c11-c12)).  The unrelaxed values are 18.7 and 16.4 GPa, respectively,

close to those found by Paxton, et al. [25].   In dimensionless form, both strengths are

0.12Gu, where Gu = (1/3)(c11-c12+ c44).
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FFFFiiiigggg....    3333::::      Shear stress-strain curves for W: circles = {110},

squares = {112}, triangles = {123}.
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Strength       in       tension.    We begin the discussion of recent calculations of strength in tension

with the work of Milstein and Chantasiriwan [32], who used fitted embedded-atom (EAM)

methods to compute the response of twelve fcc and bcc metals to unconstrained uniaxial

loading along [100], [110] and [111].  Their subjects included the fcc metals Al, Cu, Ni,

Au, and Ag, and the bcc metals Mo, Na, Li, Rb, Nb and Fe.  While their potential is

imprecise by the standards of recent pseudopotential work, its simplicity allowed them to

explore the behavior of a number of metals in a number of different deformation modes.  A

sampling of their results is included in Table III.  They found that bcc metals are weak in

tension when pulled along [100], while fcc materials tend to fail in shear prior to tensile

instability when pulled in that direction.  The former result helps to explain {100} cleavage

in bcc metals, while the latter is consistent with the ductility of fcc metals (though the axial

symmetry of their applied tension precludes the {111} slip that is ordinarily observed in

fcc).  They found that fcc metals were relatively weak when pulled in [110], a prediction

that is not borne out by the limited pseudopotential work that is now available.  The

crystallography of the failure modes is clearly important, and we shall discuss it in the

following section.

Ab initio pseudopotential studies of tensile strain in some of the same materials were done

by Sob, et al. [33-34], by Li and Wang [35] and by the present authors [30-31].  For W in

fully relaxed tension along [100], Sob, et al. [33] calculate a strength of 28.9 GPa

(0.07E100).  As expected, this value is much lower than the strength in a stretch along

[111], the other case they studied.  Our own result for W in [100] tension is almost

identical, 29 GPa [30].

In other work, Sob et al. [34] studied relaxed tension in Cu and NiAl.  They calculated a

very high tensile strength for Cu, 33 GPa for stretch along [100], 31 GPa for [110] and 29

GPa for [111].  These results are almost certainly unrealistic; such stresses would produce

shear stresses on the slip system ´112¨{111} that are several times the ideal strength in

shear [28].  However, the value for the tensile strength along [110] is interesting for the

separate reason that it differs so dramatically from the value computed by Milstein and

Chantasiriwan [32] (5.47 GPa), and does not show the relative weakness in [110] these

investigators found for all fcc's they studied.  The discrepancy is puzzling since the low

strength along [110] was interpreted [32] as a consequence of fcc symmetry.  The subject

deserves further study.      

Li and Wang [35] studied the relaxed stretch of Al along [100] and [111].  They found high

strength in tension, but they also found that shear instability intruded before tensile failure.

For example, the first failure in a relaxed stretch along [100] is an orthorhombic shear (‰3 =

-‰2) at a tensile strain of 27% and a tensile load of 12.1 GPa (Milstein and Chantasiriwan's

[32] value is 11.1 GPa).  Note, however, that this tensile stress imposes a shear stress of

5.7 GPa on the [–211](111) system, which is several times the ideal strength in shear on this

system (1.85 GPa) [28].  This result re-emphasizes the fact that the calculated strength for a

stretch on an axis of high symmetry is strongly influenced by the symmetry itself.  
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Table III:  Calculations of the ideal strength (GPa) in tension.  E is

Young's modulus in the tensile direction.  Where a shear instability

has been found before tensile failure, its stress, ß*, is also listed.

material cell ref axis ß(ß*) ß/E (ß*/E)

W bcc 33 [100] 28.9 0.071

30 [100] 29.0 0.071

Fe bcc 31 [100] 12.5 0.08

32 [100] 5.5 0.05

Al fcc 35 [100] 12.5 (12.1) 0.20 (0.19)

35 [111] 11.0 0.15

32 [100] 12.6 (11.1) 0.20(0.17)

32 [111] 14.8 0.20

32 [110] 4.18 0.06

Cu fcc 34 [100] 33 0.49

34 [111] 29 0.15

34 [110] 31 0.24

32 [100] 23.7(9.82) 0.35(0.15)

32 [111] 26.5 0.14

32 [110] 5.47 0.04

We [31] have recently completed an ab initio calculation of the ideal strength of Fe in

tension along [100].  This calculation is made difficult by the need to include the non-local

effects of the magnetic interaction; calculations that do not include these effects (for

example, Craivich, et al. [36]) yield the unphysical result that bcc Fe is mechanically

unstable in the low-temperature limit.  Our calculations predict an ideal strength of «10.5

GPa (0.08E100), for Fe in relaxed tension on [100].  The ideal strength of Fe is, in

dimensionless form, very close to that of W (0.07E100), despite the difference in the nature

of bonding.  As we shall discuss below, this result reflects the strong influence of crystal

symmetry.

Cohesive        energy        calculations.    A number of investigators have calculated the cohesive

energies of various elements and compounds as functions of their atomic configurations

(refs. [23,36-41], among many others).  Most of this work has been done to study

structural phase transformations.  If the calculated energies are plotted as functions of

strain, the conjugate stresses can be extracted from them and used to estimate the ideal

strength.  However, the published data do not allow the reader to do this with much

accuracy.  
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UUUUnnnnddddeeeerrrrssssttttaaaannnnddddiiiinnnngggg    tttthhhheeee    iiiiddddeeeeaaaallll    ssssttttrrrreeeennnnggggtttthhhh

While the ab initio calculations are limited in number, they show two clear trends.  First,

the ideal strength in a particular deformation mode is proportional to the modulus that

governs linear elastic deformation in that mode.  Second, the constant of proportionality is

set by the crystal structure.  Both trends reflect the crystallographic constraints on elastic

stability.  

Crystallographic       considerations:       "the       scent        of       an       extremum"

To understand how crystal structure influences ideal strength it is useful to consider

stability with respect to uniaxial stress in a particular direction in the six-dimensional space

of the Voigt strains.  Let eå be the strain along the axis of load.  If we plot the energy as a

function of the strain, as in Fig. 4, then the Lagrangian stress is given by the slope of the

curve, †å(eå) = ∆E/∆eå, and is approximately equal to the Cauchy stress, tå, if the strain is

not too large.  The intrinsic value of the ideal strength on this path is given by the first

maximum of the Cauchy stress, which is roughly coincident with the first inflection point

on E(eå).  While we shall stay with the one-dimensional case for illustrative purposes, the

argument is easily generalized to consider instability with respect to off-axis strain

increments.  It follows that the study of elastic instability is intimately associated with the

study of inflection points in the function E(eeee).  

While "accidental" inflection points are always possible, an inflection point in the strain-

energy relation usually falls between extrema whose positions are fixed by symmetry.  At

least three types of extrema are possible in the one-dimensional case (Fig. 5):  (1) the

extremum at infinity; in the limit of hydrostatic tension the energy becomes stable because

the atoms are arbitrarily far apart;  (2) an extremum separating identical structures that are

related by shear or rotation;  (3) an extremum between different structures that are

connected by a structural phase transformation.  In each of these cases, the extremum

creates an elastic instability that limits the mechanical strength of a solid strained in its

direction.   

F

ε

instability

FFFFiiiigggg....    4444::::  Cohesive energy as a function of strain showing

instability at the point of inflection.
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Note that, in general, the extremum that creates an elastic instability has no particular

physical significance beyond the fact that it does that.  The extremal state will almost never

be reached, since the solid becomes unstable before arriving at it.  If the extremum were

reached it could not be preserved by natural means, since it is unstable.  The strength is

determined by the proximity of the extremum (the "scent of the extremum") rather than the

extremum itself.  

ε ε ε

FFF

Extremum at infinity            Extremum by identity               Alternate structures

FFFFiiiigggg....    5555::::            Three types of extrema determined by the dependence

of cohesive energy on strain.

The crystallographic extrema that are associated with particular crystal structures have been

studied by a number of investigators, most of whom were interested in structural phase

transformations.  Milstein and co-workers [10-11, 32, 42-43] offer extensive discussions

of the extrema that determine the ideal strength in tension.  Sob, et al. [34,44] have added

interesting observations on the symmetry of tensile instabilities in simple intermetallics.

Shear instabilities have received less attention.

In the following we discuss a few specific instabilities that have important metallurgical

implications.             

{100}       cleavage       in        bcc

One of the more unfortunate facts in the history of technology is the tendency of Fe to

fracture in a brittle mode at low temperature.  This behavior, which is responsible for the

ductile-brittle transition in iron and steel, is due to the fact that Fe cleaves with relative ease

on {100} planes.  It shares this behavior with other bcc metals, but not with fcc metals,

which suggests that the source is crystallographic.  Since {100} is not the close-packed

plane in bcc it is superficially puzzling that it should be the preferred cleavage plane.

The reason that bcc metals might prefer to fracture on {100} planes is, however, obvious

when one considers the limit of strength [43].  As illustrated in Fig. 6, a relaxed distortion

along [001] is precisely the "Bain strain" that connects the bcc and fcc lattices in martensitic

transformations [45].  If the bcc structure is stable and the fcc is unstable, as is the usual

case for bcc metals, then the bcc crystal becomes elastically unstable when strained about

halfway to the fcc structure along [001].
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FFFFiiiigggg....    6666::::        The fcc structure can be referred to the bct cell outlined

in the figure at left.  It follows that fcc can be reached by

stretching bcc along [001], as shown at right.

It is useful to carry this analysis further.  If we assume constant volume, a bcc structure is

deformed into fcc by a relaxed engineering strain of 0.26 along [001].  Hence the instability

is encountered at a strain of about 0.13.  The tensile stress, ß, vanishes in both the bcc and

fcc states.  If we follow Frenkel [12] and Orowon [6] in assuming a sinusoidal form for the

stress-strain curve, the stress (ß) is given by

ß = ßmsin



π‰

0.26
 (18)

where ‰ is the strain and ßm is the maximum stress, the ideal strength in tension along

[001]. In the limit of small strain, ß = E‰, where E is the modulus for [001] strain.  It

follows that

ßm « 
0.26E

π
  = 0.08E (19)

Eq. (19) is very close to the result obtained by Sob, et al. [33] and the present authors [30]

for W, and by the present authors for Fe [31].

Note that the Bain strain is asymmetric; the fcc-bcc transformation happens when the fcc

crystal is compressed along [001], but not when it is extended.  In fact, it does not appear

that any crystallographic extremum is reached by small tensile strain in an fcc crystal [32].

It is true that the bcc structure can be made by a fully relaxed strain along [110], which is

responsible for the low tensile strengths calculated by Milstein and Chantasiriwan [31] for

this mode.  But even those stresses are high enough that the shear strength on the most

favorable {111} planes would be exceeded before they were reached.  While the subject

needs further investigation, we note that the fcc-bcc transition via stretch on [110] requires

a very large Poisson contraction along [100], which leads us to question the applicability of

EAM potentials that were fit at small strains.  The sole relevant ab initio calculation known

to us, that by Sob, et al. [34] for fcc Cu, suggests that this crystal is relatively strong in

tension on [110].    
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"Pencil        glide"       in        bcc

A second puzzling observation about the deformation of bcc crystals is the variety of

possible slip planes [46].  While the direction of slip is ordinarily ´111¨, the slip plane can

be {110}, {112} or {123}, and sometimes appears to be such a mixture of these planes

and others that the slip plane is left undermined and the deformation is described as "pencil

glide".  While pencil glide is due to the behavior of mobile dislocations, the ideal strength

in shear has a very similar behavior, and it has a simple explanation.
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FFFFiiiigggg....    7777:  a) illustration of the ABCABCA stacking sequence in bcc along the 111 direction. b)

illustration of the monoclinic saddle point relaxation for 110 slip (4 neighbors at 5.1 ‹, 2

neighbors at 5.3 ‹, and 6 neighbors at 5.7 ‹). c) illustration of the orthorhombic saddle point

relaxation for 112 and 123 slip (4 neighbors at 5.1 ‹ and 8 neighbors at 5.6 ‹).

We have already referenced results showing that in W [29] the ideal shear strengths for the

slip systems ´111¨{110}, ´111¨{112} and ´111¨{123} are almost the same.  Krenn [31]

has recently identified the crystallographic reason for this behavior, which is illustrated in

Fig. 7.  If we look along the [111] slip direction, the bcc atoms form equilateral triangles

centered on [111] (Fig. 7a).  Homogeneous shear on a plane that contains the [111] axis

has the effect of tilting the coordination triangles in the [111] direction about an axis that

lies in the plane of shear, as illustrated in the figure.  In a relaxed shear in ´111¨[10–1], the

nearest-neighbor coordination of the central atom is disrupted (the symmetry is triclinic),

but is partially restored after a strain of 0.34, at which point the crystal has six nearest

neighbors per atom and monoclinic symmetry (Fig. 7b).  If the shear is in the system

´111¨(11–2) or ´111¨(12–3) a slightly different intermediate extremum is reached, again at a

shear of 0.34.  This configuration has eight nearest neighbors and orthorhombic symmetry

(Fig. 7c).  In all three cases, the instability is located about halfway between the origin and

the symmetry point at a shear of «0.17 [30].

As in the previous example, we can estimate the ideal shear stress by assuming a sinusoidal

stress-strain relation with a stress that vanishes at both extrema.  The result is
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† = †msin



π©

0.34
 (20)

Since † = G© at small strains, where G is the appropriate shear modulus, the ideal shear

strength is

†m « 
0.34G

π
  = 0.11G (21)

which is very close to the value computed ab initio for both W and Mo [30,31].  Since W is

almost isotropic, the ideal strengths on the three glide systems are almost the same [30].  In

less isotropic bcc crystals the ideal strength should vary with the value of the modulus, G.

We do not yet have data to test this hypothesis.

Shear       in       fcc

In fcc the energy extremum that is closest to the origin in the (111) slip plane lies in the

´11–2¨ direction.  If we ignore relaxation this extremum is reached at an engineering strain of

0.33, suggesting an instability at © = 0.16.  A sinusoidal stress based on this strain (eq. 20)

would yield an ideal strength of 0.11G, which is too high (though very close to the original

Frenkel value).  However, as noted in Table II, there is a significant relaxation of the strain

in both Al and Cu, with the consequence that the instability strain drops to .145 for Al and

0.13 for Cu.  If we approximate the stress by a sinusoid like eq. 20, adjusted so that the

maximum stress falls at the instability strain, we obtain

†0(Al) « 
0.29Gr

π
  = 0.09Gr (22)

†0(Cu) « 
0.26Gr

π
  = 0.08Gr (23)     

which reproduce the results of the ab initio calculation.  

It follows from the above that one can estimate the ideal strength if one knows the strain

that induces elastic instability.  In all of the cases examined to date, the ideal strength is well

approximated by the maximum stress in a sinusoidal stress-strain relation that fits Hooke's

Law at small strains and has its maximum at the instability strain.      

AAAAcccchhhhiiiieeeevvvviiiinnnngggg    tttthhhheeee    iiiiddddeeeeaaaallll    ssssttttrrrreeeennnnggggtttthhhh

The final question is whether the ideal strength is a theoretical abstraction or a meaningful

parameter that is actually approached in engineering materials.  As we shall discuss below,

there are at least some cases in which the strength clearly does approach the ideal value, and

others in which it may.  We specifically consider the strength in shear.  If the ideal shear

strength is to be achieved, it must be possible to strain the material to elastic instability
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before the stress can be relieved by normal dislocation flow.  This can happen for any of

four reasons: (1) The material is inherently so hard that dislocations cannot move at stresses

below the ideal strength. (2) The material is microstructurally strengthened to the point that

dislocations cannot move at stresses below the ideal strength.  (3) The material contains no

dislocations.  (4) The strain is imposed so quickly that dislocations cannot respond.  The

first three possibilities are discussed below.  We have not yet investigated the case of high-

rate loading, which is complicated by the concurrent increase in temperature.   

Inherently       "hard"         materials

A minimum value of the shear stress is required to move a dislocation through a crystal.

While this stress is not well known, it is roughly measured by the Peierls-Nabarro stress,

the stress required to move a length of dislocation from one crystallographically stable

configuration to another. The simple form of the Peierls-Nabarro stress is

†P

G
  = 

2

1-ˆ
  exp



- 

2π

1-ˆ



h

b
  (24)

where h is the spacing between slip planes and b is the Burgers' vector.  It is generally

agreed that this relation is incomplete, and the correct expression is a subject of active study

[47-51].  Still, the simple form does provide a reasonable fit to the available experimental

data, as illustrated in Fig. 8 [49].  Its dominant feature is the exponential dependence on

(h/b), which is at least qualitatively retained in the more sophisticated models.  

As Fig. 8 shows, the crystallographic factor, h/b, depends on the structure, and decreases

significantly on moving from the fcc and bcc structures of the common metals to the NaCl

and diamond cubic structures of the familiar "hard" materials.  Both eq. (24) and more

recent theoretical [51] and experimental [52] work suggest that the Peierls stress exceeds

0.1G in the diamond cubic structure, and may reach several percent of G in materials with

the NaCl structure.  These numbers are in the range of the ideal strength in shear.

Recent research on Si, in particular, strongly suggests that its low-temperature deformation

is governed by its ideal strength.  Dislocation motion is not observed at low temperature

[53].  Moreover, when the material is forced to deform plastically in indentation tests it

deforms by structural phase transformation rather than dislocation flow [54,55].  While

"hard" materials with the NaCl structure have been less extensively studied, at least some

of them have been reported to behave in a similar way.  For example, Williams' classic

study of the deformation of TiC [56] found no evidence for dislocation glide at low

temperature, even when plasticity was forced by microindentation.  However, indentation

pits released a shower of dislocations on subsequent heating, showing that extensive local

lattice deformation had occurred.  It hence appears that at least the diamond cubic materials

and some of the hard carbonitrides are "inherently hard".    

There is a second, well-known class of "inherently hard" materials that deform at (or close

to) the ideal strength, even though they are not particularly strong.  This class includes

materials that deform by stress-induced martensitic transformations [57].  When a material
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is in a structure that is only marginally stable an appropriate stress can easily force the

barrier, creating “ transformation-induced plasticity”  at stresses well below those required to

move dislocations.  The phenomenon of "superelasticity" in materials like nitanol is based

on this behavior [58].
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FFFFiiiigggg....    8888....    Normalized Peierls stresses (σP/µ) at zero temperature

as a function of the crystallographic factor h/b. From Ref. 47.

Microstructurally        hardened         materials

If a material does not have the inherent strength to reach the elastic limit then one may use

various microstructural mechanisms to harden it further.  The most obvious mechanisms

are grain refinement, which strengthens through the Hall-Petch effect, work hardening,

which strengthens by adding "forest" dislocations, and precipitation hardening.  

Research on the Hall-Petch effect suggests that grain refinement cannot harden to ideal

strength, at least in conventional structural metals.  Not only is it difficult to achieve grain

sizes that are small enough to produce ideal strength, but the strength is also limited by

grain-boundary dominated processes when the grain size becomes very small; the strength

asymptotes, and may even decrease for smaller sizes [59].  For example, Kimura, Takaki

and co-workers [60-62] find the Hall-Petch relation for Fe to be given roughly by

ßy = 0.15 + 0.54d-1/2 (25)

where ß is in GPa and d is the grain size in microns.  If we take the ideal shear strength of

Fe to be 0.11G, as it is for W and Mo, then †c « 6.6 GPa, and ßy would have to exceed 13

GPa before the ideal shear strength would be reached on even the most favorable possible

slip plane.  To achieve this value, the grain size would have to fall below 2 nm.  The

smallest grain size reported by Kimura, et al. [60] is about 20 nm, with ßy < 4 GPa.  Jang
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and Koch [63] previously reported achieving grain sizes near 6 nm with ßy « 9 GPa, but

these still remain well below ideal.  While the actual mechanisms that limit strength at ultra-

fine grain size remain controversial [64,65], it does not appear that the ideal strength can be

reached in this way.

Work-hardening and precipitation-hardening strengthen the crystal by introducing defects

that act as obstacles to dislocation motion: "forest" dislocation in the case of work

hardening, small inclusions in the case of precipitation hardening.  In the conventional case

these behave as isolated barriers [66].  If their mean separation is ls, the increment to the

shear strength is

Î†c

G
  = å

b

ls
 (26)

where å measures the effective resistance offered by the obstacle (the "obstacle strength").

For dislocations, a reasonable value for å is in the range 0.1-0.3, while for impenetrable

precipitates that have almost equal size (the strongest morphology [67]), å has a maximum

value of about 0.7 [68].  To achieve Î†c « 0.1G by dislocation hardening would,

therefore, require a dislocation spacing less than 3b; to do it with precipitation hardening

would require a precipitate spacing less than about 7b.  Neither seems achievable.  

On the other hand, it may be possible to approach the ideal strength by hardening with

precipitates at high volume fraction, where deformation requires dislocation flow through

the narrow interstices of the particles.  This seems to be the approach recently used by

Knapp, et al. [69] to achieve very high indentation strength in oxide-strengthened

aluminum.  It is not yet clear how close they have come to the theoretical limit.

Defect-free         materials

There are two ways to make defect-free samples for experimentation: to grow small, defect-

free crystals ("whiskers"), or to do indentation tests with "nanoindenters" that are so small

in diameter that they probe volumes that lie between mobile defects.

Since the classic work of Brenner [15], whisker measurements have been widely cited as

the standard of maximum  strength.  However, as it has become possible to calculate the

ideal strength it has become increasingly clear that whisker strengths do not approach the

ideal value all that closely.  For example, Brenner's highest values for the critical resolved

shear stress of Cu is 0.85 GPa, his value for Fe is 3.56 GPa., and the highest value

obtained on W whiskers [70] is about 11 GPa.  All these values are substantially below the

ideal strength (Table I).  A close reading of Brenner's work makes it understandable that

this should be the case.  Whiskers are small crystals with very high surface-to-volume

ratios, and Brenner noted that their deformation appeared to initiate at the surface in every

case.  The deformation process that competes with elastic instability in a defect-free crystal

is the spontaneous nucleation of dislocations [71].  Since dislocations are most easily
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formed by heterogeneous nucleation at free surfaces, this mechanism, rather than elastic

instability, is likely to limit the strength of defect-free crystals.

The alternate method for testing defect-free material is nanoindentation [72-75], which is,

essentially, a microhardness test done with a nano-tipped indenter.  The tip is instrumented

to record load-displacement data.  Until the substrate yields, the deformation field of the

indenter should be approximately Hertzian [76], which makes it possible to use the data to

infer the stresses and strains at which yielding occurred.  Moreover, since the maximum

shear in a Hertzian strain field is well beneath the surface, nanoindentation tests can avoid

early yielding by dislocation emission from the surface (barring surface damage from the

indenter [77]).

Nanoindentation tests have produced hardnesses that suggest yield at very near the ideal

strength in a variety of metals, including Au [78], W [76], Mo [79] and oxide-strengthened

Al [69].  Some of the reported values, in fact, exceed the ideal strength.  For example,

Bahr, et al. [76] report data showing shear stresses as high as 28 GPa in W prior to

yielding, well beyond the value (18 GPa) that corresponds to the ideal strength on any of

the common slip planes.  The interpretation of this data is complicated by the absence of a

detailed stress analysis of the indentation field.  Not only are triaxial stresses present,

which may change the ideal strength, but the moduli soften dramatically as the ideal

strength is approached, introducing unknown errors in the Hertzian stress.  

A recent analysis by Roundy [30] suggests that most of the discrepancy between the

computed ideal shear strength and the values inferred from Hertzian analyses of the best

nanoindentation data may be attributable to the softening of the moduli.  He assumes that

the Hertzian solution gives a reasonable approximation to the strain field, but, because of

the softened moduli, mis-estimates the stress at the instability.  Using sinusoidal stress-

strain dependence, he obtains

†m = 



2

π
    †H (27)

where †m is the ideal shear strength and †H is the instability stress inferred from the

Hertzian stress field.  With this correction, the maximum Hertzian stress measured by

Bahr, et al. [76] for W, 28 GPa, corresponds to a shear strength of 17.8 GPa, very close

to the theoretical result.

CCCCoooonnnncccclllluuuussssiiiioooonnnn

Given powerful new tools for both experimental and theoretical analysis, and important

new incentives to study the behavior of nearly perfect materials, the ideal mechanical

strengths of materials will become an increasingly active subject of research in the coming

years.  The problem is as interesting as it is important.  
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